
Week 2 - Wednesday



 What did we talk about last time?
 Objects
 Classes
 Enums
 Packages









 An interface is a set of methods which a class must have
 Implementing an interface means making a promise to 

define each of the listed methods
 It can do what it wants inside the body of each method, but it 

must have them to compile
 A class can implement as many interfaces as it wants



 An interface looks a lot like a class, but all its methods are empty
 In Java 8 and higher, default implementations can be given, but never 

mind that now
 Interfaces have no members except for (static final) 

constants

public interface Guitarist {
void strumChord(Chord chord);
void playMelody(Melody notes);

}



public class RockGuitarist extends RockMusician
implements Guitarist {

public void strumChord( Chord chord ) {
System.out.print("Totally wails on that " +
chord.getName() + " chord!");

}

public void playMelody( Melody notes ) {
System.out.print("Burns through the notes " +
notes.toString() + " like Jimmy Page!" );

}
}



 A class has an is-a relationship with interfaces it implements, 
just like a superclass it extends

 Code that specifies a particular interface can use any class 
that implements it

public static void perform(Guitarist guitarist, 
Chord chord, Melody notes) {
System.out.println("Give it up " +
"for the next guitarist!");
guitarist.strumChord( chord );
guitarist.playMelody( notes );

}



 Let's look at the List<E> interface
 Some of its methods:
 boolean add(E element)
 void add(int index, E element)
 void clear()
 E get(int index)
 int size()
 boolean remove(Object o)



 There are lots of different ways of keeping a list of data
 The List interface doesn't care how we do it
 And there are lots of implementations that Java provides:
 ArrayList
 LinkedList
 Stack
 Vector

 You can use whichever you think best suits your task in terms 
of efficiency





 Many interfaces only have a single method
 Consider the following example:

 To implement this interface, a class must:
 State that it implements the interface
 Have a public, non-static method called makeNoise() that takes 

no parameters and returns a String

public interface NoiseMaker {
String makeNoise();

}



 Here are classes that implement NoiseMaker:
public class Pig implements NoiseMaker {

public String makeNoise() {
return "Grunt!";

}
}
public class Explosion implements NoiseMaker {

public String makeNoise() {
return "BOOM!";

}
}
public class Wind implements NoiseMaker {

public String makeNoise() {
return "Woosh!";

}
}



 If an object implements an interface, it can be used wherever that 
interface is needed because we know it can do the job

 We could pass a Pig, Explosion, or Wind object to the 
scareChildren()method

NoiseMaker[] noiseMakers = new NoiseMaker[100];
noiseMakers[0] = new Wind();

public static void scareChildren(NoiseMaker maker) {
System.out.println("Hey, kids!");
System.out.println(maker.makeNoise());

}



 When a child class extends a parent class, it gains all of its 
members and methods

 When a class implements an interface, it's promising to have 
all of the capabilities required by that interface

 In Java, it's impossible to extend more than one parent class
 However, a single class can implement an unlimited number 

of interfaces
 It has the capabilities required by each of the interfaces
 Many unrelated classes could implement the same interface



 In addition to the NoiseMaker interface, consider the 
following interfaces:

public interface Colored {
Color getColor();

}

public interface Operation {
int process(int a, int b);

}



 Here is a class that implements all three interfaces:

public class LoudPinkAdder
implements NoiseMaker, Colored, Operation {
public String makeNoise() {

return "Bang!";
}
public Color getColor() {

return Color.PINK;
}
public int process(int a, int b) {

return a + b;
}

}





 Given an arbitrary object, it's possible to tell if it implements a 
specific interface

 As with extending classes, you can use the instanceof
keyword to see if an object is an instance of an interface
 What an ugly keyword!

 After you discover that an object implements an interface, 
you can cast it to that interface and call methods defined by 
that interface

 Don't cast something to an interface it doesn't have or you'll 
get a ClassCastException and crash your program!



public void tryToMakeNoise(Object object) {
// Check for interface
if(object instanceof NoiseMaker) {

// Perform cast
NoiseMaker maker = (NoiseMaker)object;
System.out.println(maker.makeNoise());

}
else

System.out.println("Can't make noise.");
}







 Lab 2 tomorrow
 On Friday, we'll talk about defining and extending interfaces



 Keep reading Chapter 10
 Get started on Project 1
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