
Week 2 - Wednesday

 What did we talk about last time?
 Objects
 Classes
 Enums
 Packages

 An interface is a set of methods which a class must have
 Implementing an interface means making a promise to

define each of the listed methods
 It can do what it wants inside the body of each method, but it

must have them to compile
 A class can implement as many interfaces as it wants

 An interface looks a lot like a class, but all its methods are empty
 In Java 8 and higher, default implementations can be given, but never

mind that now
 Interfaces have no members except for (static final)

constants

public interface Guitarist {
void strumChord(Chord chord);
void playMelody(Melody notes);

}

public class RockGuitarist extends RockMusician
implements Guitarist {

public void strumChord(Chord chord) {
System.out.print("Totally wails on that " +
chord.getName() + " chord!");

}

public void playMelody(Melody notes) {
System.out.print("Burns through the notes " +
notes.toString() + " like Jimmy Page!");

}
}

 A class has an is-a relationship with interfaces it implements,
just like a superclass it extends

 Code that specifies a particular interface can use any class
that implements it

public static void perform(Guitarist guitarist,
Chord chord, Melody notes) {
System.out.println("Give it up " +
"for the next guitarist!");
guitarist.strumChord(chord);
guitarist.playMelody(notes);

}

 Let's look at the List<E> interface
 Some of its methods:
 boolean add(E element)
 void add(int index, E element)
 void clear()
 E get(int index)
 int size()
 boolean remove(Object o)

 There are lots of different ways of keeping a list of data
 The List interface doesn't care how we do it
 And there are lots of implementations that Java provides:
 ArrayList
 LinkedList
 Stack
 Vector

 You can use whichever you think best suits your task in terms
of efficiency

 Many interfaces only have a single method
 Consider the following example:

 To implement this interface, a class must:
 State that it implements the interface
 Have a public, non-static method called makeNoise() that takes

no parameters and returns a String

public interface NoiseMaker {
String makeNoise();

}

 Here are classes that implement NoiseMaker:
public class Pig implements NoiseMaker {

public String makeNoise() {
return "Grunt!";

}
}
public class Explosion implements NoiseMaker {

public String makeNoise() {
return "BOOM!";

}
}
public class Wind implements NoiseMaker {

public String makeNoise() {
return "Woosh!";

}
}

 If an object implements an interface, it can be used wherever that
interface is needed because we know it can do the job

 We could pass a Pig, Explosion, or Wind object to the
scareChildren()method

NoiseMaker[] noiseMakers = new NoiseMaker[100];
noiseMakers[0] = new Wind();

public static void scareChildren(NoiseMaker maker) {
System.out.println("Hey, kids!");
System.out.println(maker.makeNoise());

}

 When a child class extends a parent class, it gains all of its
members and methods

 When a class implements an interface, it's promising to have
all of the capabilities required by that interface

 In Java, it's impossible to extend more than one parent class
 However, a single class can implement an unlimited number

of interfaces
 It has the capabilities required by each of the interfaces
 Many unrelated classes could implement the same interface

 In addition to the NoiseMaker interface, consider the
following interfaces:

public interface Colored {
Color getColor();

}

public interface Operation {
int process(int a, int b);

}

 Here is a class that implements all three interfaces:

public class LoudPinkAdder
implements NoiseMaker, Colored, Operation {
public String makeNoise() {

return "Bang!";
}
public Color getColor() {

return Color.PINK;
}
public int process(int a, int b) {

return a + b;
}

}

 Given an arbitrary object, it's possible to tell if it implements a
specific interface

 As with extending classes, you can use the instanceof
keyword to see if an object is an instance of an interface
 What an ugly keyword!

 After you discover that an object implements an interface,
you can cast it to that interface and call methods defined by
that interface

 Don't cast something to an interface it doesn't have or you'll
get a ClassCastException and crash your program!

public void tryToMakeNoise(Object object) {
// Check for interface
if(object instanceof NoiseMaker) {

// Perform cast
NoiseMaker maker = (NoiseMaker)object;
System.out.println(maker.makeNoise());

}
else

System.out.println("Can't make noise.");
}

 Lab 2 tomorrow
 On Friday, we'll talk about defining and extending interfaces

 Keep reading Chapter 10
 Get started on Project 1

	COMP 2000
	Last time
	Questions?
	Project 1
	Interfaces
	Interface basics
	Interface definition
	Interface use
	Usefulness
	Interface example
	List implementations
	Implementing Interfaces
	Interfaces
	Example classes
	Using such classes
	Capabilities
	Implementing more than one interface
	Implementing more than one interface
	Which Interfaces Have You Got?
	Testing for an interface
	Testing for an interface example
	Quiz
	Upcoming
	Next time…
	Reminders

